1. Tujuan [Kembali]
2. Komponen [Kembali]
1. Power Suply
2. Voltmeter DC
3. Baterai
4. Generator DC
B. BAHAN
1. Resistor
2. Dioda 1N4001
- Package Type: Available in DO-41 & SMD Packages
- Diode Type: Silicon Rectifier General Usage Diode
- Max Repetitive Reverse Voltage is: 1000 Volts
- Average Fwd Current: 1000mA
- Non-repetitive Max Fwd Current: 30A
- Max Power Dissipation is: 3W
- Max Storage & Operating temperature Should Be: -55 to +175 Centigrade
3. Transistor NPN BC547
Data Sheet Transistor
Grafik Respon:
4. OP AMP LM358
- Ini terdiri dari dua op-amp internal dan frekuensi dikompensasi untuk gain kesatuan
- Gain tegangan besar adalah 100 dB
- Lebar pita lebar adalah 1MHz
- Jangkauan pasokan listrik yang luas termasuk pasokan listrik tunggal dan ganda
- Rentang catu daya tunggal adalah dari 3V ke 32V
- Jangkauan pasokan listrik ganda adalah dari + atau -1.5V ke + atau -16V
- Penyaluran arus pasokan sangat rendah, yaitu 500 μA
- 2mV tegangan rendah i / p offset
- Mode umum rentang tegangan i / p terdiri dari ground
- Tegangan catu daya dan diferensial i / p tegangan serupa ayunan tegangan o / p besar
A. Spesifikasi
- Wide supply voltage range: 3.0V to 15V
- Low power: 100 nW (typ.)
- Medium speed operation: tPHL = tPLH = 40 ns (typ.) at CL = 15 pF, 10V supply
- High noise immunity 0.45 VCC (typ.)
B. Konfigurasi PIN
Pin No | Pin Name | Description |
---|---|---|
1 | A0 | Input 1 of XOR gate 0 |
2 | B0 | Input 2 of XOR gate 0 |
3 | Q0 | The output of XOR gate 0 |
4 | Q1 | The output of XOR gate 1 |
5 | A1 | Input 1 of XOR gate 1 |
6 | B1 | Input 2 of XOR gate 1 |
7 | VSS | Source Supply |
8 | A2 | Input 1 of XOR gate 2 |
9 | B2 | Input 2 of XOR gate 2 |
10 | Q2 | The output of XOR gate 2 |
11 | Q3 | The output of or gate 3 |
12 | A3 | Input 1 of OR gate 3 |
13 | B3 | Input 2 of OR gate 3 |
14 | VDD | Drain Supply |
- 4-Channel Mux and Demux
- 4:1 Multiplexer IC
- 1:4 Demultiplexer IC
- Supports both Analog and Digital Voltage
- Nominal Voltage: 5V, 10V, 15V
- Maximum Operating Voltage: 20V
- Propagation Delay: 400ns at 5V
- Available in 16-pin PDIP, CDIP,SOIC, TSSOP packages
Pin Number | Pin Name | Description |
16 | Vdd | Positive power input, maximum 20V |
7 | Vee | Negative power rail, normally connected to ground. |
8 | Vss (Ground) | Connected to ground of the circuit |
6 | INH | Enable pin – Must be pulled to ground for normal operation |
9,10 | A,B | Channel Select pins |
1,12 | Y0,X0 | Channel 0 Input / Output |
5,14 | Y1,X1 | Channel 1 Input / Output |
2,15 | Y2,X2 | Channel 2 Input / Output |
4,11 | Y3,X3 | Channel 3 Input / Output |
3,13 | Y,X | Common Output / Input |
- Type: Rotary a.k.a Radio POT
- Available in different resistance values like 500Ω, 1K, 2K, 5K, 10K, 22K, 47K, 50K, 100K, 220K, 470K, 500K, 1 M.
- Power Rating: 0.3W
- Maximum Input Voltage: 200Vdc
- Rotational Life: 2000K cycles
Pin No. | Pin Name | Description |
1 | Fixed End | This end is connected to one end of the resistive track |
2 | Variable End | This end is connected to the wiper, to provide variable voltage |
3 | Fixed End | This end is connected to another end of the resistive track |
- 4-Channel Mux and Demux
- 4:1 Multiplexer IC
- 1:4 Demultiplexer IC
- Supports both Analog and Digital Voltage
- Nominal Voltage: 5V, 10V, 15V
- Maximum Operating Voltage: 20V
- Propagation Delay: 400ns at 5V
- Available in 16-pin PDIP, CDIP,SOIC, TSSOP packages
Pin Number | Pin Name | Description |
16 | Vdd | Positive power input, maximum 20V |
7 | Vee | Negative power rail, normally connected to ground. |
8 | Vss (Ground) | Connected to ground of the circuit |
6 | INH | Enable pin – Must be pulled to ground for normal operation |
9,10 | A,B | Channel Select pins |
1,12 | Y0,X0 | Channel 0 Input / Output |
5,14 | Y1,X1 | Channel 1 Input / Output |
2,15 | Y2,X2 | Channel 2 Input / Output |
4,11 | Y3,X3 | Channel 3 Input / Output |
3,13 | Y,X | Common Output / Input |
10. Sensor Infrared
A. Konfigurasi Pin
Pin Name | Description |
VCC | Power Supply Input |
GND | Power Supply Ground |
OUT | Active High Output |
11. Sensor touch
- Operating voltage 2.0V~5.5V
- Operating current @VDD=3V, no load
- At low power mode typical 1.5uA, maximum 3.0uA
- The response time max 220mS at low power mode @VDD=3V
- Sensitivity can adjust by the capacitance(0~50pF) outside
- Stable touching detection of human body for replacing traditional direct switch key
- Provides Low Power mode
- Provides direct mode、toggle mode by pad option(TOG pin) Q pin is CMOS output
- All output modes can be selected active high or active low by pad option(AHLB pin)
- After power-on have about 0.5sec stable-time, during the time do not touch the key pad, and the function is disabled
- Auto calibration for life at low power mode the re-calibration period is about 4.0sec normally, when key detected touch and released touch, the auto re-calibration will be redoing after about 16sec from releasing key
- The sensitivity of TTP223N-BA6 is better than TTP223-BA6’s. but the stability of TTP223N-BA6 is worse than TTP223-BA6’s.
B. Konfigurasi Pin :
* Pin 1 : Vcc
* Pin 2 : Gnd
* Pin 3 : Vout
C. grafik respon
1. Pin 1 merupakan heater internal yang terhubung dengan ground.
2. Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.
3. Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.
4. Pin 4 merupakan output yang akan menghasilkan tegangan analog.
- Sensitivitas tinggi dengan area deteksi luas
- Long life
- Detection gas : LPG, i-butane, Propane, Methane, Alkohol, Hidrogen
- Concentration : 200 - 5000 ppm (LPG dan Propane), 300 - 5000 ppm (Butane), 5000 - 20000 ppm (Methane), 300 - 5000 ppm (Hidrogen), 100 - 2000 ppm (Alkohol)
- Circuit Voltage (Vc) : 5V
- Heating Voltage (Vh) : 1.4V-5V
- Heating Time Th (High) : 60s
- Heating Time Th (Low) : 90s
- Load Resistence (RL) : Adjustable
- Heater resistance (Rh) : 33 ohm
- Heater Consumption : <800 mW
- Sensing resistance : 3K ohm - 30K ohm (pada 1000 ppm iso Butane)
- Preheat time : >24 jam
13. LDR
14. 7 Segment Anoda
A. Spesifikasi
- Available in two modes Common Cathode (CC) and Common Anode (CA)
- Available in many different sizes like 9.14mm,14.20mm,20.40mm,38.10mm,57.0mm and 100mm (Commonly used/available size is 14.20mm)
- Available colours: White, Blue, Red, Yellow and Green (Res is commonly used)
- Low current operation
- Better, brighter and larger display than conventional LCD displays.
- Current consumption : 30mA / segment
- Peak current : 70mA
B. Konfigurasi pin
Pin Number | Pin Name | Description |
1 | e | Controls the left bottom LED of the 7-segment display |
2 | d | Controls the bottom most LED of the 7-segment display |
3 | Com | Connected to Ground/Vcc based on type of display |
4 | c | Controls the right bottom LED of the 7-segment display |
5 | DP | Controls the decimal point LED of the 7-segment display |
6 | b | Controls the top right LED of the 7-segment display |
7 | a | Controls the top most LED of the 7-segment display |
8 | Com | Connected to Ground/Vcc based on type of display |
9 | f | Controls the top left LED of the 7-segment display |
10 | g | Controls the middle LED of the 7-segment display |
15. Decoder (IC 7447)
A. Spesifikasi
- has a broader Voltage range
- A variety of operating conditions
- internal pull-ups ensure you don't need external resistors
- Four input lines and seven output lines
- input clamp diode hence no need for high-speed termination
- comes with open collector output
B. Konfigurasi pin:
Data Sheet Decoder:16. Encoder (IC 74147)
A. Spesifikasi
- It operates at 4.5V to 5.5 DC voltage.
- It delivers output current from low 70µA to high 8mA
- It operates at the temperature from -55℃ to 70℃
- Logic Case packaging type: DIP
- Mounting Type: Through Hole
- Pin No. 1 - 4 (input)
- Pin No. 2 - 5 (input)
- Pin No. 3 - 6 (input)
- Pin No. 4 - 7 (input)
- Pin No. 5 - 8 (input)
- Pin No. 6 - C (output)
- Pin No. 7 - B (output)
- Pin No. 8 - Ground (GND)
- Pin No. 9 - A (output)
- Pin No. 10 - 9 (input)
- Pin No. 11 - 1 (input)
- Pin No. 12 - 2 (input)
- Pin No. 13 - 3 (input)
- Pin No. 14 - D (output)
- Pin No. 15 - Not Connected (NC)
- Pin No. 16 - Vcc or positive power supply
17. Relay
Nomor PIN | Nama Pin | Deskripsi |
1 | Coil End 1 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 12V dan ujung lainnya ke ground |
2 | Coil End 2 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 12V dan ujung lainnya ke ground |
3 | Common (COM) | Common terhubung ke salah satu Ujung Beban yang akan dikontrol |
4 | Normally Close (NC) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu |
5 | Normally Open (NO) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu |
- Trigger Voltage (Voltage across coil) : 5V DC
- Trigger Current (Nominal current) : 70mA
- Maximum AC load current: 10A @ 250/125V AC
- Maximum DC load current: 10A @ 30/28V DC
- Compact 5-pin configuration with plastic moulding
- Operating time: 10msec Release time: 5msec
- Maximum switching: 300 operating/minute (mechanically)
No: | Pin Name | Description |
1 | Terminal 1 | A normal DC motor would have only two terminals. Since these terminals are connected together only through a coil they have not polarity. Revering the connection will only reverse the direction of the motor |
2 | Terminal 2 |
B. DC Motor Specifications
- Standard 130 Type DC motor
- Operating Voltage: 4.5V to 9V
- Recommended/Rated Voltage: 6V
- Current at No load: 70mA (max)
- No-load Speed: 9000 rpm
- Loaded current: 250mA (approx)
- Rated Load: 10g*cm
- Motor Size: 27.5mm x 20mm x 15mm
- Weight: 17 grams
A. Spesifikasi :
- Superior weather resistance
- 5mm Round Standard Directivity
- UV Resistant Eproxy
- Forward Current (IF): 30mA
- Forward Voltage (VF): 1.8V to 2.4V
- Reverse Voltage: 5V
- Operating Temperature: -30℃ to +85℃
- Storage Temperature: -40℃ to +100℃
- Luminous Intensity: 20mcd
B. Konfigurasi Pin :
- Pin 1 : Positive terminal of LED
- Pin 2 : Negative terminal of LED
20. Ground Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian
3. Dasar Teori [Kembali]
- RESISTOR
Resistor merupakan komponen elektronika dasar yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian.Sesuai dengan namanya, resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Resistor memiliki simbol seperti gambar dibawah ini :
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
- Dioda
Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
A. Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
C. Kondisi tegangan negatif (Reverse-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
3. Rumus
- Transistor NPN
Rumus dari Transitor adalah :
hFE = iC/iB
dimana, iC = perubahan arus kolektor
iB = perubahan arus basis
hFE = arus yang dicapai
Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Karakteristik Output
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
- OP-AMP
Karakteristik IC OpAmp
- Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
- Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
- Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
- Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
- Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
- Karakteristik tidak berubah dengan suhu
Karakteristik IC OpAmp
- Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
- Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
- Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
- Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
- Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
- Karakteristik tidak berubah dengan suhu
Inverting Amplifier
Rumus:
NonInverting
Rumus:
Komparator
Rumus:
Adder
Rumus:
Bentuk Gelombang
- Gerbang NOT (IC 7404)
Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.
Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.
Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1"
Tabel kebenaran untuk logika Ex-OR adalah
- Decoder (IC 7447)
IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448.
IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.
Konfigurasi Pin Decoder:
a. Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C dan D. Pin input berkeja dengan logika High=1.
b. Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.
c. Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low, sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.
d. Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
e. Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.
- Encoder 74147
- Multiplexer IC 4052
Ø Klasifikasi Multiplexer
- 16-1 Multiplexer (4 Baris)
- 8-1 Multiplexer (3 Baris)
- 4-1 Multiplexer (2 Baris)
- 2-1 Multiplexer (1 Baris)
Ø Sirkuit Terpadu Multiplexing
IC NO. | FUNGSI | OUTPUT |
---|---|---|
74157 | Quad 2 : 1 Mux | Output sama dengan input yang dimasukkan |
74158 | Quad 2 : 1 Mux | Output berlawanan dengan input |
74153 | Dual 4 : 1 Mux | Output sama dengan input |
74352 | Dual 4 : 1 Mux | Output berlawanan dengan input |
74151 | 8 : 1 Mux | Output berlawanan dengan input |
74150 | 16 : 1 Mux | Output berlawanan dengan input |
Apa Fungsi Multiplexer?
Seperti yang sudah dijelaskan di atas, bahwa multiplexer digunakan untuk menyeleksi data untuk kemudian dipindahkan ke satu jalur. Data tersebut diseleksi berdasarkan logika yang dipasangkan oleh operator itu sendiri. Penggunaan mux juga meningkatkan efisiensi transmisi data, sehingga menjadi jauh lebih cepat dibanding tidak menggunakannya.
Ada beberapa aplikasi Mux yang bisa Anda simak berikut ini:
1. Sistem Komunikasi
Penggunaan komponen ini memungkinkan digunakannya sistem komunikasi, seperti stasiun Tributary, Relay, dan sistem transmisi, sehingga menjadi lebih cepat dan efisien. Tidak hanya itu, proses transmisi berbagai jenis data seperti audio dan video dapat digunakan bersamaan.
2. Jaringan Telepon
Sinyal radio yang berasal dari berbagai perangkat akan diintegrasikan ke dalam satu jalur menggunakan multiplexer, kemudian signal tersebut diteruskan ke perangkat tujuan Anda.
3. Hard Drive Komputer
Penggunaan multiplexer bertujuan untuk mengurangi jalur yang terhubung langsung dengan hard drive dengan komponen lain dalam komputer, agar penyimpanan bisa dilakukan dengan maksimal dan minim kesalahan.
4. Transmisi Sistem Komputer Satelit
Mux juga digunakan untuk mentransmisikan data dari komputer satelit ke sistem di bumi menggunakan satelit GPS.
CD4052 as 4:1 Multiplexer:
CD4052 dapat digunakan sebagai Multiplexer 4:1, yaitu dapat mengambil input dari 4-channel dan mengubahnya menjadi output saluran tunggal berdasarkan pin pilihan saluran. Dalam kasus kami empat saluran Input adalah X0Y0, X1Y1, X2Y2 dan X3 dan Y3 dan saluran output tunggal adalah X,Y. Output pada saluran tunggal ditentukan berdasarkan pin pilih saluran A dan B. Keadaan pin pilih dan pemilihan saluran ditunjukkan pada tabel di bawah ini:
A | B | Channel Selected |
0 | 0 | Channel 0 |
1 | 0 | Channel 1 |
0 | 1 | Channel 2 |
1 | 1 | Channel 3 |
The complete working of a 4:1 MUX using the CD4052 simulation is shown in the video below, the image here shows a snapshot of it.
Seperti yang Anda lihat pada gambar di atas, pin pemilihan saluran masing-masing adalah 1 dan 0 untuk A dan B. Artinya Saluran 1 yaitu X1 dan Y1 dipilih. Jadi input yang diberikan ke X1 dan Y1 direfleksikan pada pin X dan Y.
- Demultiplexer IC 4052
Setelah memahami apa itu multiplexer, sebaiknya Anda memahami pula tentang apa itu demultiplexer. Sebab, kedua komponen ini kerap disandingkan dan saling berhubungan agar perintah yang dimasukkan oleh operator bisa diteruskan pada komponen komputer lainnya.
Pada komponen demultiplexer, terdapat satu jalur input dan banyak jalur output. Jalur input inilah yang akan dihubungkan dengan multiplexer.
Tanpa adanya kedua komponen tersebut, perintah yang dimasukkan oleh operator kemungkinan tidak berjalan dengan lancar, atau minimal sangat lambat. Dengan demikian, komponen itu diperlukan untuk meningkatkan efisiensi dan mengurangi kesalahan.
Ø Klasifikasi Demultiplexer
- 1-16 Demultiplexer (4 Baris)
- 1-8 Demultiplexer (3 Baris)
- 1-4 Demultiplexer (2 Baris)
- 1-2 Demultiplexer (1 Baris)
Ø Sirkuit Terpadu Demultiplexing
IC NO. | FUNGSI | OUTPUT |
---|---|---|
74139 | Dual 1 : 4 Demux | Output berkebalikan dengan input |
74156 | Dual 1 : 4 Demux | Output merupakan open collector |
74138 | 1 : 8 Demux | Output berkebalikan dengan input |
74154 | 1 : 16 Demux | Output berkebalikan dengan input |
74159 | 1 : 16 Demux | Output merupakan open collector dan sama dengan input |
Fungsi Demultiplexer
Seperti yang sudah Anda ketahui, bahwa Demultiplexer memiliki satu jalur transisi input dan beberapa jalur output. Jalur output tersebut biasanya langsung terhubung dengan komponen penting dalam komputer.
Dapat disimpulkan bahwa, data berbentuk seri yang berasal dari mux akan dikonstruksi ulang menjadi berbentuk paralel. Kemudian, perintah atau data tersebut diteruskan pada perangkat yang bersangkutan.
Berikut ini merupakan aplikasi dari demultiplexer:
· Sistem Komunikasi
Demultiplexer menerima data dari multiplexer dan mengubahnya menjadi bentuk semula untuk kemudian diteruskan ke komponen komputer yang bersangkutan. Contohnya adalah video, data berupa gambar akan dikirimkan ke monitor, sedangkan suara akan diteruskan ke pengeras suara.
· Arithmetic Logic Unit (ALU)
ALU merupakan microprocessor yang berfungsi untuk melakukan perhitungan. Pada bagian ini, demultiplexer menyimpan output dari ALU ke unit penyimpanan atau register.
Aritmethic Logic Unit / John R. Southern @Flickr |
Komponen multiplexer dan demultiplexer memiliki fungsi yang sangat krusial bagi perangkat komputer. Jika komponen penting ini di komputer Anda mengalami kerusakan, maka bagian lainnya tentu akan sangat terganggu. Bahkan, perintah sederhana seperti menyetel video sekalipun tidak akan terlaksana dengan baik.
CD4052 as 1:4 Demultiplexer:
CD4052 dapat digunakan sebagai Demultiplexer 1:4 juga, yaitu dapat mengambil satu input dan menyediakan salah satu dari 4 saluran keluaran berdasarkan pin pilih saluran. Di sini pin input akan menjadi X dan Y. Pin output dapat berupa X0,Y0 atau X1,Y1 atau X2,Y2 atau X3,Y3 berdasarkan nilai yang ditetapkan pada pin A dan B. Kami telah membahas cara memilih saluran menggunakan pin A dan B pada tabel di atas.
Gambar di atas menunjukkan simulasi CD4052 dalam rangkaian demultiplexer, cara kerja lengkapnya dapat ditemukan di video yang ditautkan di bawah ini. Seperti yang Anda lihat di sini, saluran 2 dipilih dengan menjadikan A sebagai 0 dan B sebagai 1. Dan karenanya input yang diberikan ke pin X dan Y direfleksikan pada pin saluran 2 X2 dan Y2
- Sensor Sentuh
- Sensor Infrared
Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.
- LDR
- Sensor Gas MQ2
- Potensiometer
- Relay
- Apabila coil diberikan arus listrik, maka akan timbul gaya elektromagnetik yang dapat menarik armature untuk merubah switch contact point.
- Apabila coil tersebut sudah tidak dialiri arus listrik, maka Armature akan kembali lagi ke posisi Normally Close.
- Umumnya, coil yang digunakan oleh relay untuk mengubah switch contact point ke posisi NC hanya membutuhkan arus listrik yang kecil.
- 7 Segment Anoda
Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.
Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.
Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.
Tabel Pengaktifan Seven Segment Display
- Light Emitting Code (LED)
Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.
Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya. Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube.
- Light Emitting Code (LED)
Simbol dan Bentuk LED (Light Emitting Diode)
Cara Kerja LED (Light Emitting Diode)
Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).
LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya
Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).
LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya
- Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti
Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
- Voltmeter
Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.
- Ground
Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian
- Baterai
- Power Supply
- Generator DC
Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu: |
|
Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang. Prinsip Kerja generator DC Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday : Dengan lain perkataan, apabila suatu konduktor memotong garis-garis fluksi magnetik yang berubah-ubah, maka GGL akan dibangkitkan dalam konduktor itu. Jadi syarat untuk dapat dibangkitkan GGL adalah :
|
Prinsip Kerja Generator DC |
Keterangan gambar :
|
Untuk menentukan arah arus pada setiap saat, berlaku pada kaidah tangan kanan :
|
- Download File HTML klik disini
- Download Rangkaian klik disini
- Download Video klik disini
- Download Data Sheet Resistor klik disini
- Download Data Sheet Dioda 1N4001 klik disini
- Download Data Sheet Transistor NPN BC547 klik disini
- Download Data Sheet Relay klik disini
- Download Data Sheet LM358 Klik Disini
- Download Data Sheet LED klik disini
- Download Data Sheet Motor DC klik disini
- Download Data Sheet Potensiometer klik disini
- Download Data sheet Touch Sensor klik disini
- Download Data Sheet Sensor Infrared klik disini
- Download Data Sheet Sensor Gas MQ2 KLIK DISINI
- Download Data Sheet LDR klik disini
- Download Data Sheet XOR IC 4030: klik disini
- Download Data Sheet NOT IC 7404 klik disini
- Download Data Sheet Decoder 7447 [klik disini]
- Download Data Sheet Encoder IC 74147 klik disini
- Download Data Sheet Multiplexer IC 4052 klik disini
- Download Data Sheet Demultiplexer IC 4052 klik disini
- Download Data Sheet Seven Segment [klik disini]
- Download File Library Sensor MQ2 KLIK DISINI
- Download File Library Touch Sensor klik disini
- Download File Library Sensor Infrared klik Disini
Tidak ada komentar:
Posting Komentar